سفارش تبلیغ
صبا ویژن

شرکت خشکه و فولاد پایتخت

فلز برنج – برنج (Brass) ترکیبی آلیاژی از مس و روی است. معمولاً ترکیب این آلیاژ با عناصر دیگر را برنز می گویند. گاهی اوقات نام عنصر آلیاژی به همراه برنز آورده می شود. برای مثال: برنز قلع دار یا برنز فسفردار. صدها نوع ترکیب گوناگون در هر یک از این گروه ها وجود دارد.

فلز برنج

فلز برنج-Brass- ترکیبی آلیاژی از مس و روی است. کاربرد برنج- برنج های کارپذیر-کار سرد

با تغییر مقدار روی، خواص آلیاژهای مس – روی نیز تغییر می کند. برنج های مس – روی که عناصر اضافی مانند قلع، آلومینیوم، سیلیسیم، منگنز، نیکل و سرب دارند به عنوان برنج های آلیاژی نام دارند.

برنج از مدت ها پیش حتی قبل از تاریخ مورد شناخت بود. در آن زمان که انسان هنوز فلز روی را نمی شناخت. با ذوب کردن مس همراه با کالامین (سنگ معدن فلز روی) برنج تولید می کرد.

برنج معمولاً قابلیت چکش خواری بیشتری نسبت به مس و روی دارد و دمای ذوب آن تقریباً بین 900 تا 940 درجه سانتی گراد است. البته سختی و نرم بودن آن می تواند با تغییر نسبت مخلوط مس و روی تغییر کند. مس داخل برنج (از طریق اولیگو دینامیک) خاصیت میکروبکشی به آن می دهد. به همین خاطر از برنج به عنوان دستگیره و دیگر فلزات رایج در بیمارستان استفاده می کنند.

امروز تقریباً 90% از فلزات برنج بازیافت می شوند. چون فلز برنج خاصیت مغناطیسی کمی دارد و به راحتی می توان آن را از فلزاتی که معمولاً با آنها مخلوط می شود جدا کرد. بدین ترتیب برنجی که می گردد را دوباره بازیافت می کنند. چگالی برنج ریختگی در حدود 8400 تا 8700 کیلوگرم بر مترمکعب می باشد.

فلز برنج-Brass- ترکیبی آلیاژی از مس و روی است. کاربرد برنج- برنج های کارپذیر-کار سرد

خواص فیزیکی

اکثر آلیاژهای برنج دارای دامنه انجماد بسیار کم هستند. و وجود فلزات دیگر در مس عملاً باعث پائین آمدن نقطه ذوب می شود. و هر قدر دامنه انجماد کمتر باشد، سیالیت آلیاژ بهتر خواهد بود ولی این امر معمولاً با زیاد شدن حجم انقباض متمرکز همراه است.

برنج از نقطه نظر شبکه محلول های جامد مس و روی دارای خواص زیر می باشند:

  • محلول جامد α : این شبکه در سرما چکش خوار است. ولی چکش خواری آن در گرما منوط به نداشتن سرب در آلیاژ است (به دلیل تشکیل سرب مایع در گرما)
  • محلول جامد β: در این شبکه وجود سرب کمتر مزاحم بوده و شبکه خاصیت چکش خواری خود را در گرما حفظ می کند.
  • محلول جامد γ: این شبکه سخت و شکننده است و خواص عمومی شبکه γ را دارد.

دسته بندی آلیاژی مس

آلیاژهای مس مانند آلومینیوم به دو دسته آلیاژهای کارپذیر (نوردی) و ریختگی تقسیم می گردند. هر دسته از این آلیاژها نیز بر حسب شرایط ترکیبی عناصر آلیاژی می توانند عملیات حرارتی پذیر یا عملیات حرارتی ناپذیر باشند.

انواع برنج های کارپذیر (نوردی) فقط حاوی مس و روی می باشند و عناصر دیگر در حد ناخالصی در آنها وجود دارد و برنج های آلیاژی علاوه بر مس و روی حاوی عناصر دیگری نظیر سیلیسیم، آهن ، قلع و سرب و … هستند و بیشتر از طریق ریخته گری شکل می گیرند.

برنج با 5 تا 15 درصد روی

کار بر روی قطعه در حالت سرد (Cold working). این نوع برنج ها به ویژه هنگامی که میزان روی آنها نزدیک به 15 درصد باشد به راحتی قابل انجام است. این برنج ها از قابلیت شکل پذیری خوب و مقاومت خوردگی بالایی برخوردارند، اما به سختی ماشینکاری می شوند. آلیاژهایی که در این گروه قرار می گیرند. عبارتند از: برنج طلاکاری (به 5 درصد روی). برنز صنعتی (با 10 درصد روی)، و برنج قرمز (با 15 درصد روی).

برنج طلاکاری بیشترین کاربرد را در صنعت طلا و جواهرسازی برای ساخت روکش های طلایی رنگ دارد. شکل پذیری این برنج مانند مس است اما استحکام آن بیشتر است. در ضمن قابلیت ماشینکاری ضعیفی دارد. برنز صنعتی به علت قابلیت شکل پذیری آن در جواهرسازی، آهنگری و پرسکاری بکار می رود. قابلیت ماشینکاری آن ضعیت است، اما دارای خواص کار در حالت سرد بسیار خوبی است. به همین علت از آن برای ساخت لوله های کویل رادیاتورها و کندانسورها استفاده می شود.

آلیاژ برنج با 20 تا 36 درصد روی

آلیاژهایی که در این گروه قرار می گیرند. عبارتند از: برنج کم روی (با 20 درصد روی). برنج فشنگ (با 30 درصد روی)، برنج معمولی (با 35 درصد روی).

از آنجا که روی ارزانتر از مس است، آلیاژهایی که درصد روی آنها بیشتر است ارزانتر هستند. این آلیاژها قابلیت ماشینکاری بهتر و استحکام بالاتری دارند. اما مقاومت خوردگی آنها پایین است. و امکان ترک خوردگی فصلی (Season Cracking) در نقاط دارای تنش های پسماند در آنها وجود دارد.

برنج کم روی بسیار شبیه برنج قرمز است و برای قطعاتی که نیاز به عملیات کشش عمیق (Deep Drawing) دارند استفاده می شوند. در میان آلیاژهای مس – روی دارای بهترین ترکیب شکل پذیری و استحکام است. پوکه های فشنگ در ابتدا کاملاً به روش کار در حالت سرد تولید می شدند. فرآیند ساخت از چندین مرحله عملیات کشش عمیق تولید می شد. که پس از هر با کشش، قطعه بازپخت می شد تا برای مرحله بعد مهیا شود. گرچه قابلیت کار در حالت گرم برنج معمولی ضعیت است. اما عملاً می توان از آن در بسیاری از فرآیندهای ساخت استفاده نمود و تنوع محصولات این آلیاژ نیز به همین علت است.

فلز برنج

اگر مقادیر اندکی سرب به برنج افزوده شود، قابلیت ماشینکاری آن بسیار بالا می رود. و تا حدی نیز قابلیت کار در حالت گرم آن نیز بهتر می شود. افزودن سرب به برنج، خواص جوشکاری و انجام کار در حالت سرد را دچار مشکل می کند. از آلیاژهای این گروه می توان به برنج کم سرب (با 35.5 درصد روی، 0.5 درصد سرب). برنج پر سرب (با 34 درصد روی، 2 درصد سرب)، و برنج خوش تراش (با 35.5 درصد روی، 3 درصد سرب) اشاره کرد.

برنج کم سرب نه تنها دارای قابلیت ماشینکاری خوبی است. بلکه خواص کار در حالت سرد خوبی نیز دارد به گونه ای که مناسب ساخت قطعات مختلف ماشین تراش است. برنج پر سرب که گاهی اوقات ((برنج حکاکی)) نیز نامیده می شود. برای ساخت ابزارآلات، قفل و قطعات ساعت بکار می رود. آلیاژ برنج خوش تراش که برای ساخت قطعات ماشین های تراش به کار می رود دارای مقاومت خوردگی خوب و خواص مکانیکی مطلوبی است.

برنج مفرغ (Admiralty Metal) (با 28 درصد روی) دارای یک درصد قلع است. که مقاومت خوردگی خوبی به ویژه در مقابل آب دریا به آن می دهد. این آلیاژ دارای استحکام و شکل پذیری خوبی است ولی قابلیت ماشینکاری و نورد آن ضعیت است. به علت مقاومت بالا در مقابل خوردگی، از آن در ساخت تجهیزات نیروگاه و تجهیزات شیمیایی استفاده می شود. برنج آلومینیوم دار (با 22 درصد روی) دارای 2 درصد آلومینیوم است. و به علت نزدیک بودن خواص آن با برنج مفرغ، دارای کاربردهای مشابهی است. به علت مقاومت بالای برنج آلومینیوم دار در مقابل خوردگی ناشی از جریان های سریع آب. استفاده از آن برای ساخت لوله، در مقایسه با برنج مفرغ دار از ارجحیت بیشتری برخوردار است.

برنج با 36 تا 40 درصد روی

آلیاژهای برنج با بیش از 38 درصد روی دارای قابلیت شکل پذیری کمتری نسبت به برنج فشنگ هستند. و انجام کار سرد بر روی آنها نیز امکان پذیر نیست. از این آلیاژ اغلب برای کار در حالت گرم و حدیده کاری استفاده می کنند. فلز مونتز (Muntz Metal) (با 40 درصد روی) دارای قیمت ارزان و تا حدودی مقاوم در برابر خوردگی است. برنج دریایی (Nabal Brass) تقریباً دارای همان ترکیب فلز مونتز است با این تفاوت که حاوی 0.75 درصد قلع می باشد. وجود قلع در این آلیاژ سبب بالا رفتن مقاومت آن در برابر خوردگی می شود.

کاربرد

از این آلیاژ به دلیل خواص ویژه و شکل و رنگ آن در جاهای مختلفی استفاده می کنند:

  • دکوراسیون داخلی به خاطر رنگ تقریباً طلایی رنگش
  • در جاهایی که به اصطکاک کم نیاز باشد مثل مغزی قفل ها
  • در سازهای موسیقی مخطوصاً بخاطر خاصیت آکوستیک (مثل هورن).
  • ساخت ابزار آلات و شیرآلات ساختمانی

ساختارهای بلوری برنج

بزرگترین وجه تمایز بین انواع مختلف برنج بر اساس ساختار بلوری آنهاست. دلیل این امر این است که ساختارهای اتمی دو عنصر مس و روی متفاوت است. و آنها را بسته به نسبت محتوا و درجه حرارت ترکیب می کنند.

برنج دریایی

برنج دریایی (Naval Brass) به گونه ای از آلیاژ مس اطلاق می شود. که به طور نقریبی از 59% مس، 40% روی و 1% قلع و نیز مقدار کمی سرب تشکیل شده باشد. این آلیاژی جزء خانواد? برنج های آلفا – بتا یا برنج های مضاعف (Duplex Brasses) دسته بندی می شود. این خانواده از برنج ها بطور معمول سختی بیشتری نسبت به دیگر برنج ها دارند.

همان گونه که از اسم برنج دریایی بر می آید. این آلیاژ به منظور استفاده در کابردهای دریایی گسترش دارد. قلع در اصل برای جلوگیری از خوردگی به این آلیاژ اضافه شده است. حضور سرب در این آلیاژ باعث بالا رفتن قابلیت ماشینکاری این فلز میشود. با این حال برای مثال قابلیت ماشین کاری میل? برنج دریایی 35% قابلیت ماشینکاری آلیاژ برنج معمولی است. اضافه کردن قلع علاوه بر مورد که بیان شد باعث می شود. تا برنج دریایی مقاومت بالایی در برابر خروج روی از آلیاژ می شود. خروج روی نوعی استحاله است که در آن روی به واسطه خوردگی از آلیاژ جدا می شود.

پدیده خروج فلز روی از آلیاژ برنج دریایی برای اولین بار در سال 1920 میلادی. در لوله های برنجی کندانسور (انتقال حرارت) کشتی ها نمایان شد. در آن زمان به این اتفاق پدید? کندانسوری (Condenseritis) می گفتند. از آن زمان تلاش های بسیاری صورت گرفت تا این مشکل بسیار مخرب در کشتی ها حل شود. ابداع برنج دریایی یکی از تلاش هایی است که در این راستا بود. استفاده از این آلیاژ تنها محدود به صنایع دریانوردی نمی شود. از این آلیاژ به دلیل دارا بودن استحکام کششی و مقاومت برشی بیشتر نسبت به سایر آلیاژهای مس. در کاربردهای صنعتی مختلف همچون شیرهای صنعتی استفاده می شود.

پدیده روی زدایی برنج دریایی

زمانی که یکی از عناصر آلیاژی که دور تر از آرایش گاز نجیب نسبت به عناصر دیگر قرار دارد. از ساختار آلیاژ حذف می شود و در مورد برنج دریایی یک ساختار متخلخل از مس بدون مقاومت مکانیکی به جای می گذارد. بیان می شود که خروج عنصر آلیاژی واقع شد برخی آلیاژهای مس مانند برنج دریایی تمایل بسیار زیادی به از دست دادن عنصر آلیاژی خود. و در نتیجه ترک خوردگی براساس تنش را دارا هستند. این ترک خوردگی ها بسیار سریع رخ می دهند و آثارشان برای این فلز به شدت مخرب است.

این پدیده بیشتر در بین آلیاژهایی از مس که حاوی روی هستند رخ می دهد. اگرچه در ترکیبات مس – منگنز، و در واقع نادرتر در آلیاژ مس – نیکل نیز رخ می دهد. در خصوص برنج، این پدیده با نام خروج روی (dezincification) شناخته می شود و در مواقعی رخ می دهد. که آلیاژی دارای 15% یا بیشتر فلز روی باشد. در عنصر برنج های آلفا، پدیده خروج روی باعث ایجاد یک لایه یکنواخت از مس متخلخل می شود. در برنج های دوفازی (فاز آلفا و بتا)، عموماً فاز بتا مورد حمله قرار می گیرد و آلیاژ تکه تکه می شود.

برخی از عناصر آلیاژی مانند آرسنیک، آنتیموان و فسفر می توانند. باعث جلوگیری از لایه لایه شدن آلیاژ برنج آلفا شوند. اما نمی توانند باعث جلوگیری از تکه تکه شدن برنج آلفا – بتا شوند. در آلیاژهایی با حدود 30% روی، این عناصر در حد 0.02 – 0.1% موجود می باشند. برخی از آلیاژهای مس از جمله برنج دریایی و مس – منگنز بسیار مستعد خوردگی تنشی هستند. این پدیده زمانی شدت پیدا می کند که میزان عناصر فعال در آلیاژ یا سطح تنش افزایش یابد. خوردگی تنشی معمولاً در حضور آمونیاک یا ترکیبات آن رخ می دهد. اگرچه مواردی از خوردگی تنشی برنج دریایی در مجاورت سیترات ها، تارترات و نیترات ها نیز گزارش شده است.

مقاومت در برابر خوردگی

مس به طور معمول مقاومت بالایی در محیطهای خورنده مانند آب و هوای دارای فلوراید از خود نشان می دهد. مس و برخی از آلیاژهایش بسیار مستعد خوردگی شیاری هستند. اما مکانیزم رخداد این پدیده با مکانیزمی که در فولاد زنگ نزن رخ می دهد بسیار مقاوم است. اگرچه بطور کلی برنج برای استفاده در محیط های مرطوب مناسب است. اما پدید? روی زدایی یکی از بزرگترین مشکلات این نوع از آلیاژها است مخصوصاً در شرایطی که محیط اسیدی یا بازی است.

به این منظور برای به کاربردن این آلیاژها در محیط های مرطوب اسیدی یا بازی مقادیر کمی از قلع. آرسنیک و فسفر به این آلیاژ اضافه می شود. از برنج دریایی در مبدل های حرارتی کشتی های دریا نیز استفاده می شود. برنج دریایی علاوه بر مستعد آسیب بودن در برابر خوردگی تنشی نسبت به خوردگی حفره ای نیز بسیار آسیب پذیر هستند. این پدیده زمانی رخ می دهد که برنج دریایی در مجاورت سولفیدهایی قرار بگیرد. که در شرایط رکود سیستم در مجاورت آب دریا به وجود آمده است. برای به کاهش حداقلی این حساسیت در برابر حمله سولفیدها از سولفات های آهنی در ساختار آلیاژ استفاده می شود.

مکانیزم روی زدایی

مس تشکیل شده توسط روی زدایی برنج، در تصاویر میکروسکوپی، یک لایه متراکم در سطح، تقریباً متناسب با ضخامت عمق روی زدایی است. در مس زیرین غالباً حلقه های رشد لایه های مس متناوب، کم و بیش متراکم قابل مشاهده است. گاهی اوقات این لایه ها دارای نواردهایی از اکسید حجیم هستند و باند باریک از مس متراکم معمولاً در مجاورت جبهه خوردگی مشاهده می شود. این ویژگی ها بر اساس مشاهدات آزمایشگاهی توضیح داده شده اند که می توانند توضیح مناسبی برای مکانیزم روی زدایی باشند. اولین مرحله در روی زدایی و یا خوردگی حفره ای برنج انحلال مس و روی است.

فلز برنج

فلز برنج

از انحلال مس کلرید مس به وجود می آید. در خوردگی حفره ای، کلرید مس رسوب شده و متعاقباً هیدرولیز یا اکسیده می شود و به محصولات ثانویه تبدیل می شونند. در روی زدایی اما کلرید مس (I) به مس اولیه در نقط? شروع تبدیل می شود. برنج آلفا و برنج آلفای غیر آرسنیکی هر دو کلرید مس (I) را به مس کاهش می دهند. (بتا خیلی راحت تر)، اما آلفای دارای آرسنیک چنین نمی کند. این اختلافات بین سه نوع برنج در حساسیت نسبی آنها نسبت به روی زدایی منعکس می شود.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
09121224227
09371901807
تلفن: 02166800251
فکس: 66800546


فولاد تندبر-فولاد تندبُر (High -speed steel) در اصطلاح به اختصار HSS خوانده می شود. زیر مجموعه ای از فولادهای ابزاری است که معمولاً جهت ساخت ابزارهای برشی از آن استفاده می شود.

فولاد تندبر-فولاد تندبُر چیست؟High -speed steel-فولاد 3343-فولاد HSS-مقاطع فولادی

فولاد تندبر

این فولاد معمولاً در ساخت مته و تیغه های صفحه اره گرد بُر کاربرد دارد. طبق تعریف استاندارد ASTM A600-92a. فولادهای تند بر به دلیل قابلیتشان در ماشینکاری مواد در سرعت های نسبتاً بالا به این طریق نامگذاری شده اند. این فولادها، آلیاژهای پایه آهن پیچیده ای از کربن، کروم، مولیبدن یا تنگستن یا هر دو هستند. و ممکن است در بعضی موارد درصد بالایی از کبالت نیز داشته باشند.

این فولادها نسبت به فولاد های کربن-بالایی که تا دهه 1940 استفاده می شد. برتری داشته و سختی خود را در دماهای بالاتری حفظ می کنند. این ویژگی باعث شده تا ابزارهای برشی ساخته شده از جنس HSS. قابلیت کار در سرعت های بالاتری نسبت به فولادهای کربن – بالا داشته باشد. و به همین دلیل فولاد تندبر نامگذاری شده است.

از جمله ویژگی های شناخته شده فولادهای تندبر داشتن سختی (معمولاً بالای 60 راکول) و مقاومت به سایش بالا است. که معمولاً به میزان تنگستن و وانادیوم به کار رفته در ساخت آنها ارتباط دارد.

کاربرد اصلی فولادهای تندبر ساخت ابزارهای برشی مانند : مته ها، قلاویز، فرز انگشتی (End mill). تیغچه تراشکاری، هاب چرخنده تراشی و تیغه های اره گردبر است.

انواع فولاد تندبر

فولادهای تندبر آلیاژهایی هستند که خواص خود را از تنگستن یا مولیبدن و معمولاً هر دو بدست می آورند. این فولادها جزو سیستم آلیاژی چند – جزئی آهن – کربن – X هستند. که در آن X نشانگر یکی از عناصر کروم، تنگستن،مولیبدن ،وانادیم یا کبالت است. معمولاً درصد عنصر X بیشتر از 7% به همراه بیش از 0.6% کربن است. این درصدها به تنهایی باعث افزایش سختی فولادها نشده. و برای تبدیل به فولاد تندبر واقعی نیاز به عملیات حرارتی دما بالا دارند.

در سیستم واحد نامگذاری (UNS)، گریدهای نوع تنگستنی (برای مثال T1 و T15) به صورت سری T120XX نامگذاری می شوند. در حالیکه گریدهای نوع مولیبدنی (برای مثال M2 و M48) به صورت سری T113XX نامگذاری می شوند. در استاندارد ASTM هفت نوع گرید تنگستنی و 17 نوع گرید مولیبدنی به رسمیت شناخته شده است.

افزودن مجموع حدود 10% تنگستن و مولیبدن راندمان سختی و استحکام فولادهای تندبر را پیشینه کرده و کمک می کند. که این فولادها در دماهای بالا این خواص را حفظ کنند.

فولادهای تندبُر تنگستنی

T1

اولین فولاد تندبر ساخته شده می باشد که در سال 1903 اختراع شد و حاوی 14% تنگستن بود. این فولاد امروزه با فولاد M2 جایگزین شده است.

فولادهای تندبُر مولیبدنی

M1

فولاد M1 خواص استحکام در دمای بالای M2 را ندارد. اما نسبت به شوک مقاوم تر بوده و انعطاف پذیرتر است.

M2

فولاد M2 فولاد تندبُر «استاندارد» صنعت و پرکاربردترین آنها است. این فولاد دارای کاربیدهای کوچک و تقسیم شده به صورت منظمی است. که باعث شده این فولاد مقاومت به سایش بالایی داشته باشد. اما حساسیت دکربوریزه شدن آن کمی بالاست. سختی این فولاد پس از عملیات حرارتی برابر سختی T1 میشود. اما مقاومت به خمش آن تا 4700 مگاپاسکال می رسد. همچنین استحکام و خواص ترموپلاستیسیته آن 50% بیشتر از T1 است. از این فولاد برای ساخت ابزارهای زیادی از جمله مته، قلاویز، برقو و … استفاده می شود. در استاندارد ISO 4957 فولاد 1.3343 معادل فولاد M2 می باشد.

M7

از فولاد M7 برای ساخت مته های بزرگتر که انعطاف پذیری و عمر زیاد. نیز از اهمیت بالایی برخوردار است استفاده می گردد.

M50

فولاد M50 خواص استحکام در دماهای بالای سایر گریدهای HSS را ندارد. اما برای دریل هایی که شکست مشکلی اساسی آنها است. و نیاز به انعطاف پذیری بیشتری است مورد استفاده قرار می گیرد. از این گرید معمولاً برای ساخت ساچمه های بلبرینگ های دما – بالا نیز استفاده می شود.

فولادهای تندبر کبالتی

افزایش عنصر کبالت باعث افزایش مقاومت به گرما می شود. و می تواند سختی را تا بالای 67 راکول افزایش دهد.

M35

M35 مشابه M2 است که 5% عنصر کبالت به آن اضافه شده است. M35 را معمولاً با نام فولاد کبالتی، HSS یا HSS-E نیز می شناسند. این فولاد نسبت به M2 توان کارکردن در سرعت های بالاتر و عمر بیشتری دارد.

M42

فولاد M42 فولاد تندبر سری مولیبدنی بوده که دارای 8 تا 10% کبالت است. از این گرید معمولاً در صنایع تراشکاری و فرزکاری حرفه ای استفاده می شود. چرا که نسبت به سایر گریدهای فولادهای تندبر، خواص مقاومت به گرمای فوق العاده ای دارد. و اجازه می دهد ابزار با سرعت های بیشتری کارکرده و زمان تولید کاهش پیدا کند. همچنین مقاومت به «لب پَر شدن» M42 در هنگام استفاده از آن. برای برش مقاطع ناپیوسته بیشتر از سایر گریدها بوده. و نسبت به ابزارهایی که از جنس کاربید ساخته شده اند. ارزان قیمت تر هستند. ابزارهای ساخته شده از این گرید معمولاً با نماد HSS-Co مشخص می شوند.

اثر عناصر آلیاژی

سری T حاوی 12 تا 2% تنگستن است و کروم، وانادیوم و کبالت دیگر عناصر اصلی آلیاژی هستند. سری M تقریباً 3.5 تا 10 درصد مولیبدن دارد و کروم، وانادیوم، تنگستن و کبالت سایر عناصر آلیاژی هستند. همه انواع فولادهای تندبر، چه پایه مولیبدنی و چه پایه تنگستنی، حدود 4% کروم دارند. اما درصد کربن و وانادیوم آنها متفاوت است. به عنوان یک قانون کلی زمانی که درصد وانادیم زیاد شود، درصد کربن نیز زیاد می شود.

فولاد تندبر تنگستنی نوع T1 حاوی مولیبدن یا کبالت نیست. انواع فولاد تندبر پایه تنگستنی، کبالت دار شامل فولادهای T4 تا T15 است و درصد کبالت در آنها متفاوت است.

فولادهای تند بر نوع مولیبدنی M1 تا M10 فاقد کبالت بوده. (به استثنای M6)، اما بیشتر آنها حاوی مقداری تنگستن هستند. فولادهای تندبر ممتاز پایه کبالتی، مولیبدنی – تنگستنی، به طور کلی در سری M30 و M40 طبقه بندی می شوند. فولادهای فوق پر سرعت معمولاً از M40 به بالا نامگذاری می شوند. سختی این فولادها را می توان از طریق عملیات حرارتی به شدت افزایش داد.

کربن

کربن با اختلاف مهم ترین عنصر تأثیرگذار بوده و به دقت کنترل می شود. با اینکه اکثر فولادهای تندبر محدوده باریکی برای حداقل و حداکثر میزان کربن دارند. تغییرات کوچک حتی در این بازه باریک نیز می تواند. سبب تغییرات چشمگیر در خواص مکانیکی و قدرت برش ماده شود. با افزایش کربن، سختی حین کار و در دمای بالا نیز افزایش می یابد. همچنین افزایش درصد کربن باعث افزایش شکل گیری کاربیدهای پیچیده، پایدار و سخت می شود. افزایش تعداد کاربیدها باعث افزایش مقاومت به سایش می شود.

سیلیسیم

تأثیر افزایش درصد سیلیسیم تا 0.1% ملایم استت. به صورت کلی معمولاً درصد سیلیسیم کمتر از 45% نگه داشته می شود.

منگنز

به طور کلی، غلظت منگنز در فولادهای تندبر زیاد نیست. این امر به دلیل تأثیر منگنز در افزایش تردی و احتمال ترک برداشتن در هنگام کوئنچ کردن ماده است.

فسفر هیچ گونه تأثیر مثبتی در فولادهای تندبر نداشته و به دلیل ایجاد پدیده «شکنندگی در دمای سرد». یا تردی در دمای اتاق، غلظت فسفر در حداقل ممکن نگه داشته می شود.

کروم

کروم در فولادهای تندبر همیشه حضور داشته و غلظتی بین 3 تا 5% دارد. فولادهای تندبر قابلیت سختکاری خود را عمدتاً از وجود کروم بدست می آورند. عموماً درصد کروم در فولادهای تندبر 4% است زیرا به نظر می رسد. که این غلظت بهترین سازش را بین سختی و چقرمگی ایجاد می کند. علاوه بر این، کروم باعث کاهش اکسیداسیون و پوسته پوسته شدن در طی عملیات حرارتی می شود.

تنگستن

وجود تنگستن در فولادهای تندبر حیاتی است. تنگستن در تمام فولادهای تندبر سری T وجود داشته ولی فقط در دو گرید فولاد سری M وجود دارد. کاربیدهای پیچیده آهن، تنگستن، و کربن که در فولادهای تندبر یافت می شود بسیار سخت بوده. و باعث افزایش چشمگیر مقاومت به سایش ماده می شود. تنگستن باعث افزایش سختی گرم ماده شده، و باعث ایجاد سختکاری ثانویه می شود. وجود تنگستن باعث افزایش چشمگیر مقاومت ماده به تمپر شدن می شود. در زمانیکه درصد تنگستن کاهش یابد، معمولاً درصد مولیبدن را افزایش می دهند تا کاهش آن جبران شود.

مولیبدن

مولیبدن همان کاربید دو گانه را با آهن و کربن تشکیل می دهد که تنگستن تشکیل می دهد. اما دارای نیمی از وزن اتمی تنگستن است. در نتیجه، مولیبدن می تواند بر اساس تقریباً یک قسمت مولیبدن، بر حسب وزن. به جای دو قسمت تنگستن جایگزین شود. نقطه ذوب فولادهای مولیبدنی کمی پایین تر از فولادهای تنگستنی است. و به همین دلیل به دمای سختکاری کمتری نیاز دارند و محدوده سختکاری باریک تری دارند.

وانادیوم

وانادیم در ابتدا بمنظور پاک کردن ناخالصی های سرباره. و کاهش سطح نیتروژن در عملیات ذوب، به فولادهای تندبر اضافه شد. اما به زودی مشخص شد که این عنصر به طور مؤثری کارایی برش ابزارها را افزایش می دهد. افزودن وانادیوم باعث تشکیل کاربیدهای بسیار سخت و پایدار می شود. که مقاومت به سایش را به طور قابل توجهی افزایش می دهد. و تا حدودی نیز سختی گرم را افزایش می دهد.

کبالت

تأثیر اصلی کبالت در فولادهای تندبر افزایش سختی گرم و در نتیجه افزایش کارایی برش. در هنگام بالا رفتن دمای ابزار در حین عملیات برش است.

گوگرد

گوگرد، در غلظت های طبیعی 0.03% یا کمتر، هیچ تأثیری بر خصوصیات فولادهای تندبر ندارد. با این حال، گوگرد به برخی فولادهای تندبر خاص اضافه می شود تا باعث ایجاد خاصیت خوش تراشی شود. همانطور که در فولاد های کم آلیاژ این کار را می کند.

نیتروژن

نیتروژن به صورت کلی در فولادهای ذوب شده در مجاور هوا. در غلظت هایی در حدود 0.02 تا 0.03% موجود است. این درصد در برخی فولادهای تندبر عمداً تا 0.04% یا 0.05% افزایش داده می شود. این افزایش درصد نیتروژن اگر با افزایش درصد سیلیسیم همراه شود می تواند باعث افزایش ماکسیمم سختی تمپر شده شود و می تواند بر روی مورفولوژی کاربیدها نیز تأثیر بگذارد.

پوشش (Coating)

عمر ابزار ساخته شده از فولادهای تندبر را می توان با پوشش دهی. توسط روش هایی مانند انباشت بخار فیزیکی افزایش داد. تیتانیوم نیترید (TiN) یکی از پوشش هاست. وظیفه این پوشش ها معمولاً افزایش خاصیت روانکاری و سختی است.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
09121224227
09371901807
تلفن: 02166800251
فکس: 66800546


بررسی سایش گالینگ روی قالب های تولیدی ضربه ای حین کار با ورق فولادی پراستحکام پیشرفته

بررسی سایش گالینگ روی قالب های تولیدی ضربه ای

بررسی سایش گالینگ

به منظور بهبود مقاومت بدنه و کاهش مصرف سوخت. در سالهای اخیر، صنعت اتومبیل سازی بطور گسترده از فولادهای پر استحکام پیشرفته برای تولید اجزای مختلف بدنه خودرو استفاده می نماید. از سوی دیگر، استحکام بالاتر از این نوع فولادها در مقایسه با فولادهای کشش عمیق مرسوم. باعث آن گردید تا به منظور شکل دهی ورق، فشار بالاتری به سطوح ابزار و قطعه کار اعمال شود. این مسأله سبب کاهش طول عمر ابزار میشود.

گالینگ، حالتی از خوردگی چسبندگی، بعنوان یکی از مهمترین عوامل افزایش هزینه های نگهداری قالب و همچنین افزایش نرخ اسقاط مورد توجه قرار گرفت. این تحقیق، به منظور مطالعه سایش گالینگ روی قالب تولیدی درب خودروی پژو 405 حین کار با DC04، انجام گرفت.

با استفاده از آزمون مورد ارائه توسط استانداردهای بین المللی برای سنجش سایش گالینگ. مقاومت به سایش گالینگ در ورق های کشش عمیق مرسوم و ورق پر استحکام پیشرفته مقایسه گردید. اثر عوامل مختلف از جمله ترکیب شیمیایی ورق، عملیات حرارتی و فرآیند نورد ورق. فشار ورق گیر، سختی و زبری قالب روی سایش گالینگ تعیینی است. در پایان، راه حل های مناسب برای کاهش سایش در ابزار نظیر تغییر نسبت وزنی عناصر به کار رفته در ورق اولیه. پوشش دهی ابزار شکل دهی و تغییر در نیروی ورق گیر پیشنهاد شده است.

1-مقدمه

امروزه، افزایش الزامات ساختاری ایمنی توسط استانداردهای بین المللی. و همچنین قوانین مربوط به کاهش آلایندگی اتومبیل، نیاز به افزایش کارایی این صنعت. از طریق استفاده از مواد سبکتر در ساخت اتومبیل را باعث گردید. به منظور اجرای این قوانین و استانداردها، صنایع خودروسازی به استفاده از فولادهای پر استحکام پیشرفته، روی آورده اند. این ورقهای فولادی ضمن کار با قالب های شکل دهی ورق، اثرات سایشی بیشتری نسبت به سایر ورق های فولادی مرسوم بروز می دهند.

این موضوع با افزایش زمان تعمیر و نگهداری قالب، محدودیت در حجم تولید محصول را باعث می شود. از این رو، یافتن رااهی برای کاهش میزان سایش در قالب های تولید بدنه خودرو. که از ورق های فولادی پر استحکام پیشرفته استفاده می شود. به دلیل کاهش زمان تعمیر و نگهداری و در نتیجه کاهش قیمت محصول، مورد توجه واقع گردید.

بطور کلی عوامل مؤثر در سایش را از جنبه های متفاوتی می توان بررسی نمود. بخشی از این عوامل مربوط به متالورژی ورق و قالب و خواص سطحی آنهاست که تأثیر مستقیمی بر خواص مکانیکی دارد. بخشی دیگر مربوط به پارامترهای کاری قالب های شکل دهی است.

تا کنون تحقیقات زیادی در مورد سایش لبه قالب ها ارائه گردید. عطاف و همکاران با مطالعه توزیع تنش روی لبه قالب نشان دادند که پروفیل تنش روی لبه قالب دو نقطه ماکزیمم دارد. مکان نقطه ماکزیمم بزرگتر در ورودی و دیگری با توجه به زاویه خمش ورق روی لبه قالب، در ادامه شعاع قالب اتفاق می افتد. پریرا و همکاران به بررسی دقت پروفیل لبه قالب پرداختند و نشان دادند. که افزایش تلرانس لبه قالب بین از حد قابل قبول 15 میکرومتر، موجب افزایش تنش های وارده به لبه قالب می شود.

ونگ و همکاران اثر نیروی ورق گیر و ضرب اصطکاک در توزیع تنش روی لبه های قالب را بررسی نمودند. کر خورن و همکاران به مطالعه اثر ریزساختار فولاد قالب روی اصطکاک قالب با ورق که عاملی تأثیرگذار روی سایش قالب است، پرداختند. فلوکسی و وولرتسن به بررسی سایش در قالب های کشش عمیق در ابعاد میکرو پرداختند. سینگ و همکاران، اثر سرعت فرآیند شکل دهی و اثر روانکار را بر سایش لبه قالب در فورج داغ ارزیابی کردند. همچنین، ونگ و مسعود به بررسی اثر پروفیل منحنی لبه قالب روی توزیع تنش در لبه قالب پرداختند.

اگرچه پارامترهای مؤثر بر توزیع تنش روی لبه قالب. به عنوان عامل اصلی در سایش قالب های شکل دهی ورق، به طور گسترده مورد تحقیق قرار گرفتند. اما مطالعه ای در مورد اثر متالورژی ورق در تماس با قالب. به عنوان ماده ای که اثر تنش روی آن نیز بر سایش قالب مؤثرا است. گزارش نشده است. در موارد مشابه، اوکن به بررسی اثر گالینگ در سایش آلیاژهای پایه نیکل و پایه کبالت با استفاده از روش پین روی صفحه پرداخت. بانسالی و میلر، اثر انرژی عیوب لایه ای را بر روی سایش گالینگ فلزات پایه کبالت با روش پین روی بلوک بررسی کردند.

وانگ و همکاران اثر پوشش دهی به روش های نیتریده کردن سطح و نفوذ حرارتی کاربید به سطح. در مقاومت به گالینگ ابزار شکل دهی را زمانی که با ورق پر استحکام پیشرفته در تماس باشد، مطالعه کردند. پودگورنیک و همکاران خواص ضد گالینگ نیترید بور هگزاگونال را در شکل دهی آلیاژهای آلومینیوم مطالعه کردند. بهاتاچاریا و همکاران اثر گالینگ ورق های پراستحکام پیشرفته را روی قالب های تریم (برش اضافه کار) مورد مطالعه قرار دادند. کورا و همکاران، سایش قالب را با پوشش های سطحی مختلف، ضمن کار با ورق های فولادی پر استحکام پیشرفته ارزیابی کردند. کورا و کوک ویژگی های سایشی جنس های قالب مورد استفاده برای شکل دهی ورق های فولادی پر استحکام پیشرفته را مورد بررسی قرار دادند.

با بررسی پیشینه پژوهش مشخص گردید که تا کنون اثر انرژی عیوب لایه ای و سایش گالینگ در ورق های فولادی پر استحکام پیشرفته. بعنوان ماده خام مورد استفاده در صنایع خودروسازی برای تولید قطعات بدنه خودرو، گزارش نشده است. در این تحقیق تلاش شده است. تا ضمن معرفی استاندارد G98 انجمن تست و مواد آمریکا برای مقایسه مقاومت به گالینگ در بین مواد مختلف. مقاومت به گالینگ بین دو نوع ورق کشش عمیق یا مقداری انرژی عیوب لایه ای متفاوت. در مقابل آلیاژ GGG60 بر اساس استاندارد 1693 مؤسسه استاندارد آلمان که یک آلیاژ پر کاربرد در ساخت قالب های شکل دهی است، بررسی شود.

همچنین سعی شده است تا با استفاده از نرم افزارهای تخصصی شکل دهی و مدل کردن قالب مورد نظر. اثر پارامترهای کاری قالب شکل دهی بر روی سایش بدست آید. نتایج حاصل از این تحقیق برای انتخاب ماده اولیه به منظور ساخت قالب های شکل دهی. و انتخاب ورق اولیه و تعیین پارامترهای کاری شکل دهی توسط صنایع خودروسازی مفید خواهد بود. تحقیقات آینده می تواند در زمینه یافتن بازه قابل قبول درصد عناصر محلول در ورق های فولادی پر استحکام پیشرفته. به منظور بروز کمترین احتمال رخداد در گالینگ، متمرکز شود.

2-مکانیزم سایش گالینگ

براساس استاندارد G40 انجمن تست و مواد آمریکا، گالینگ گونه ای از آسیب سطحی است. که بین سطوحی که روی یکدیگر می لغزند، ایجاد می شود. و با مشاهده میکروسکوپی زبرشدگی و نقاط آمادگی محلی روی سطح اصلی، قابل تشخیص است. با لغزش سطوح فلزی روی یکدیگر، در اثر پدیده مکث و لغزش مقداری از سطح یک فلز به دیگری منتقل می شود. با ادامه فرآیند و انتقال ماده بیشتر و روی هم انباشته شدن این رسوبات فلزی روی یکدیگر. به تدریج توده سخت و فشرده ای تشکیل می شود. که می تواند استحکام تا 1500 مگاپاسکال داشته باشند. این ذرات ضمن جدا شدن از سطح آشیانه خود و حرکت بین سطوح، موجب خراش های جدی روی سطوح فلزی (قالب و ورق) می شوند.

1-2- انرژی عیوب لایه ای و رابطه آن با سایش گالینگ

به طور کلی هر عاملی که باعث تسهیل لغزش صفحات کریستالی روی یکدیگر شود، به سایش گالینگ کمک می کند. مقاومت یک ماده در مقابل گالینگ، معمولاً با فاکتور انرژی عیوب لایه ای بیان می شود. مواد دارای عیوب لایه ای بالا مستعد گالینگ هستند. بانسالی و میلر نشان دادند که کاهش انرژی عیوب لایه ای به کاهش تمایل فلز به گالینگ منجر می شود. جدول 1، میزان انرژی عیوب لایه ای برای عناصر مختلف را نشان می دهد.

انرژی عیوب لایه ای برای عناصر مختلف و آلیاژهای گوناگون، متناسب با درصد وزنی آنها متفاوت است. بنابراین برای هر آلیاژ با توجه به عناصر محلول در آن باید از فرمول محاسبه معینی استفاده کرد. در مقایسه اولیه بین ورق های فولادی عاری از عناصر بین نشین (یا IF) و ورق های AHSS. حتی با مساوی بودن میزان انرژی عیوب لایه ای، به دلیل بالا بودن درصد کربن. و کاهش یافتن چسبندگی لایه های کریستالی در ورق های AHSS، می توان پیش بینی کرد. که این ورق ها، استعداد بیشتری به لغزش لایه های کریستالی روی یکدیگر دارند.

در نتیجه مقاومت به گالینگ کمتری در مقایسه با نمونه های فولادی IF مرسوم دارند. از آنجا که برای بالا نگه داشتن استحکام ورق نمی توان درصد کربن محلول را کاهش داد. باید میزان انرژی عیوب لایه ای ورق های AHSS در حد بهینه کنترل شود.

2-2- آزمون G98 برای مقایسه به گالینگ

استاندارد G98 انجمن تست و مواد آمریکا برای مقایسه مقاومت به گالینگ مواد مختلف، چیدمانی مشابه شکل 1 پیشنهاد می دهد. مطابق این شکل، یکی از دو نمونه به صورت پین و دیگری به صورت بلوک بطور عمود در تماس با هم قرار می گیرند. پس از وارد کردن نیروی فشاری معین بر مجموعه پین و بلوک. پین یا بلوک (معمولاً پین) در شرایط خشک و بدون حضور روانکار. یک دور کامل در مقابل دیگری گردش می کند. زمان چرخش پین در مقابل بلوک باید بین 3 تا 20 ثانیه باشد. تمامی ابعاد پین و بلوک به جز قطر و تلرانس ابعادی قطر پین در اختیار کاربر قرار دارد. سایر الزامات مورد نیاز برای اجرای آزمایش در جدول 2 ارائه و معلوم و مشخص است.

قبل از اجرای هر آزمایش و برای زدودگی چربی ها، ضروری است که پین با مایع تری کلرواتان شستشوی شود. همچنین بر طبق استاندارد می توان از هر وسیله مکانیکی یا هیدرولیکی. که نیروی مورد نظر را بطور ثابت در طول آزمایش اعمال نماید، استفاده کرد.

3- مقایسه مقاومت به گالینگ ورق فولادی IF با ورق AHSS

به منظور صحه گذاری بر پیش بینی که انجام شد. در بخش قبل مبنی بر کمتر بودن مقاومت به گالینگ ورق های AHSS نسبت به ورق های فولادی IF، با استفاده از چیدمان توصیه شده. توسط استاندارد G98، به مقایسه مقاومت به گالینگ یک نمونه ورق فولادی IF. با یک نمونه ورق AHSS مورد استفاده در تولید بدنه خودروی پژو405 گروه صنعتی ایران خودرو بررسی گردید.

شرایط موجود در اجرای آزمایش، در جدول ای 2 و 3 ارائه شده است. مقایسه شرایط موجود در حین اجرای آزمایش و شرایط استاندارد، مطلوب بودن شرایط اجرای آزمایش را به خوبی نشان می دهد.

در این آزمایش از ورق DC04 بر اساس استاندارد انگلیسی 10130 به عنوان نمونه AHSS به کاری گیری شد. که مقدار ضخامت، سختی و زبری سطح هر نمونه در جدول 4. و همچنین آنالیز عناصر موجود در دو نوع ورق با سطح اطمینان 95% در جدول 5 ارائه و معلوم و مشخص است. ساختار زمینه هر کدام از نمونه ها بعد از اچ کردن با بزرگنمایی 100 و 200 برابر در شکل 2 نمایان و مشخص می باشد. متالوگرافی سطح هر دو نمونه نشان می دهد ساختار زمینه هر دو نمونه، فریتی می باشد.

برای اعمال نیروی عمودی کنترلی و ثابت در طول اجرای آزمایش از یک دستگاه فرز دکل ساخت ماشین سازی تبریز به کاری گیری می شود. از مزایای استفاده از این دستگاه نگه داشتن مجموعه اعمال نیرو در کلگی دستگاه فرز است. که عمود بودن نیروی وارده بر پین و ورق در طول آزمایش را تضمین می کند.

بررسی سایش گالینگ

بررسی سایش گالینگ
بررسی سایش گالینگ

بررسی سایش گالینگ

بررسی سایش گالینگ

شکل 3، چیدمان آزمایش شامل نیروسنج به همراه نمایشگر تولیدی. برای اطمینان از مقدار و ثابت بودن نیروی اعمالی در طول آزمون، نشیمنگاه ورق، و همچنین پین تولیدی. همراه نگهدارنده آن بر روی کلگی دستگاه را نشان می دهد. بنابراین پیشنهاد استاندارد، نیروی اعمالی از 90 کیلوگرم آغاز می شود و با دوره های 10 کیلوگرم افزایش پیدا می کند. قبل از هر بار آزمایش، سطح پین برای تأمین صافی مورد نیاز سنگ زنی و با مایع تری کلرواتان شستشوی می شود. اندازه نیروی اعمالی تا پیدایش آثار گالینگ در هر دو نمونه ورق فولادی تا نیروی 180 کیلوگرم ادامه پیدا کرده است.

 

با توجه به افزایش باند سایش و افزایش میزان پارگی و شخم خوردگی سطح سایش یافت. آستانه پیدایش گالینگ در دو نمونه ورق تعیین گردید. ورق IF در 180 کیلوگرم یا 13/94 مگاپاسکال آثار گالینگ را از خود به نمایش گذاشت. در حالی که ورق AHSS در 130 کیلوگرم یا 10/07 مگاپاسکال آثار گالینگ را از خود نشان داده است.

با مقایسه تنش ایجاد گالینگ در دو نمونه می توان نتیجه گرفت ورق AHSS نسبت به ورق IF مورد آزمایش. استعداد بیشتری برای رخداد گالینگ دارد. بنابراین، می توان سایش قالب های شکل دهی ورق در مرحله فرمینگ، را به این موضوع نسبت داد. تماس ورق و قالب در این مرحله، بر اساس فرآیند مکث و لغزش، با اصطکاک بالا ضمن حرکت سطوح روی یکدیگر همراه است. هرچه استعداد گالینگ ورق بیشتر باشد، احتمال جدا شدن ذراتی از سطح ورق و تحمیل سایش به قالب، بیشتر می شود.

4-بررسی نرم افزاری قالب شکل دهی

پس از مطالعه گالینگ و به منظور بررسی اثر پارامترهای کاری قالب شکل دهی لازم است. تا با استفاده از نرم افزارهای المان محدود، میزان تنش و احتمال پارگی در قالب شکل دهی ارزیابی گردد. این بررسی در پاسخ به این پرسش که “آیا تنش به وجود آمده. در سطح قالب به میزان بحرانی برای پارگی ورق یا سایش قالب می رسد؟، کاربرد دارد.

در این مطالعه، قالب مورد نظر، قالب تولید درب خودروی پژو 405، با استفاده از نرم افزار کتیا مدل سازی گردید. و فرآیند شکل دهی با استفاه از نرم افزار اتوفرم شبیه سازی گشت. تمامی جزئیات اجزای قالب شامل سنبه، ماتریس، ورق گیر، بیدهای مورد بکارگیری. که به منظور کنترل سرعت کشیده شدن و تنش اعمالی روی ورق بصورت نری و مادگی بر روی ماتریس و ورق گیر قرار می گیرند. و همچنین بلوک های فاصله انداز که جهت کنترل کورس حرکتی ورق گیر و کنترل موضعی جریان و تنش. در نقاط مختلف قالب مورد استفاده قرار می گیرند. مد نظر قرار گرفت. و در شکل 5، اجزای مورد مدل سازی قالب نمایان می شود.

در این شبیه سازی، کورس حرکتی ماتریس و ورق گیر به ترتیب برابر با 1050 و 170 میلی متر و در جهت پایین می باشد. سنبه در این فرآیند ثابت است. همچنین کل زمان فرایند بر اساس تنظیمات موجود در کارخانه 4 ثانیه در مد نظر قرار گرفت. که 2 ثانیه آن مربوط به حرکت ماتریس از شروع حرکت تا درگیری ورق گیر و 2 ثانیه دیگر آن. مربوط به حرکت هم زمان ماتریس و ورق گیر و انجام عملیات کشش می باشد. به این ترتیب، سرعت حرکت ماتریس قبل از درگیری با ورق گیر برابر با 440 میلی متر بر ثانیه. و سرعت حرکت همزمان ماتریس و ورق گیر برابر با 85 میلی متر بر ثانیه می باشد.

روان کار مورد استفاده بصورت ثابت بر روی سطوح سنبه و ماتریس. و بصورت استاندارد کشش عمیق بگونه ای تعیین گردید تا ضریب اصطکاک برابر با 0/15 شود. البته در واقعیت، این مقدار با توجه به فشار پرس متغیر بوده. و برای نزدیکی بیشتر به واقعیت و بر اساس میزان فشار اعمالی در نقاط مختلف قالب. نرم افزار تغییرات لازم را به صورت خودکار انجام می دهد. با توجه به تنظیمات موجود در کارخانه، مقدار نیروی ورق گیر برابر با 70 تن نیرو قراری گیری شد. هرچند که متغییر کردن آن بر اساس زمان و کورس حرکتی تغییراتی را به همراه خواهد داشت. که موجب کنترل بیشتر روی چین خوردگی ها و پارگی ها خواهد شد.

1-4- نتایج حاصل از بررسی نرم افزاری

شکل6، تحلیل المان محدود نرم افزار در مورد تنش های عمودی اعمالی در فرایند شکل دهی را نمایش می دهد. این بررسی نشان می دهد مقدار تنش در مناطق تمرکز تنش، یعنی در لبه ها به بیش از 100 مگاپاسکال می رسد. مطابق شکل 6، لبه بالا سمت راست تودری (منظور قطعه تولیدی قالب است)، منطقه خطرناک از لحاظ توزیع تنش با مقادیر بالای 100 مگاپاسکال است.

بررسی سایش گالینگ

از این رو هنگام کار قالب با ورق پر استحکام پیشرفته انتظار می رفت تا علائم سایش و خرابی. در این بخش زودتر از سایر بخش های قالب، بروز پیدا کند. مطابق شکل 7، اثرات سایشی استفاده از ورق AHSS روی قالب در بخش مورد انتظار به مقدار بیشتر و وسیع تر ایجاد شد. که بدین ترتیب انتظارات حاصل از بررسی نرم افزاری، تطبیق خوبی با واقعیت نشان داد. به عبارت دیگر، مناطق پر تنش در بررسی نرم افزاری، دقیقاً همان مناطقی هستند که در قالب و بصورت واقعی دچار سایش شدید گردیدند.

بررسی سایش گالینگ

5-نتیجه گیری

همانطور که عنوان شد عوامل بسیار متعددی در سایش قالب های شکل دهی مؤثر هستند. از یک طرف مباحث مربوط به متالورژی ورق و مقاومت ورق در برابر گالینگ و همچنین ویژگی های اصطکاکی مطرح هستند. و از طرفی دیگر مسائل مربوط به پارامترهای شکل دهی اهمیت دارند.

بررسی سایش گالینگ

در تحقیقی که انجام پذیرفت مباحث مربوط به متالورژی ورق در راستای استعداد به گالینگ ورق های فولادی. بعنوان مکانیزم اصلی سایش در این قالب ها. مورد استفاده در صنایع خودروسازی مطرح و نمایان و مشخص شد. که با تغییر در ترکیب شیمیایی ورق مورد استفاده می توان در جلوگیری از وقوع گالینگ تأثیر گذاشت. در ادامه و با اجرای آزمایش استاندارد G98، همین مسأله در بین دو نوع ورق مورد استفاده در صنایع خودروسازی، مورد مطالعه قرار گرفت. و نمایان و مشخص شد.

که یکی از علل سایش بیشتر قالب حین استفاده از ورق AHSS، استعداد به گالینگ بیشتر این ورق نسبت به ورق IF است. همچنین از آنجا که مکانیزم سایش در ارتباط مستقیم با اصطکاک بین ورق و قالب می باشد. تمامی مباحث تأثیرگذار در مقدار اصطکاک از جمله جهت نورد ورق مورد استفاده، روانکار و پوشش سطحی قالب در میزان سایش مؤثر است. هرچند که سخت کاری قالب و پوشش دهی سطحی آن. همانند رسوب بخار شیمیایی و رسوب بخار فیزیکی ترکیبات تیتانیم و کروم در تحمل تنش های وارده به آن نیز اثر گذر است.

از جنبه ای دیگر و با بررسی نرم افزاری قالب شکل دهی نشان داده شد. که طی فرایند کشش عمیق، با افزایش تنش های نرمال و برش وارده بر ورق، احتمال بروز سایش گالینگ بیشتر می شود. این مسأله، به خوبی خود را در لبه های قالب که تحت بیشترین تنش هستند، نشان داد. مقایسه تنش نرمال بدست آمده در تست G98 و تنش پیش بینی شده توسط نرم افزار المان محدود. و مطابقت خوب آنها با یکدیگر، صحت شبیه سازی را صحه گذاری نمود. بنابراین می توان با تغییر در پارامترهای کاری شکل دهی از جمله تناژ دستگاه. محل و اندازه بیدها و بلوک های فاصله انداز به کار رفته. و سرعت حرکت اجزای قالب حین اجرای فرایند، تا حدود زیادی از سایش قالب جلوگیری کرد.

حمیدرضا بدخشیان، محمد سروش مرکانی، بیژن ملایی داریانی، علی پرویزی

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
09121224227
09371901807
تلفن: 02166800251
فکس: 66800546

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


فولاد ساختمانی یک اصطلاح کلی برای مواد فولاد است. که برای ساخت مصالح ساختمانی در اشکال مختلف مورد استفاده قرار می گیرد.

فولاد ساختمانی - پروفیل فولادی - مقاطع فولادی - فوولاد آلیاژی - فولاد ساختمانی استاندارد آمریکا

فولاد ساختمانی

بسیاری از پروفیل های فولادی به شکل یک تیر بلند است که مشخصات یک مقطع خاص را دارد. شکل پروفیل های فولادی، اندازه، ترکیب شیمیایی، مشخصات مکانیکی مانند مقاومت. شیوه های ذخیره سازی و غیره با استفاده از استاندارد ها در اکثر کشورهای صنعتی تنظیم می شود.

اکثر پروفیل های فولادی مانند تیرهای با مقطع I، گشتاور دوم سطح بالایی دارند. به این معنی که از نظر سطح مقطع بسیار قوی هستند. و در نتیجه می توانند میزان بار زیادی را بدون تغییر شکل در خور اهمیت تحمل کنند.

فولاد ساختمانی استاندارد آمریکا

فولادهای مورد استفاده در ساخت و ساز در ایالات متحده. از آلیاژهای استانداردی که توسط ASTM International شناسایی و مشخص شده اند، استفاده می کنند. این فولادها دارای یک شناسایی آلیاژ هستند که با A. و سپس دو، سه یا چهار عدد پس از آن شروع می شود. درجات چهار عددی AISI فولاد که معمولاً برای مهندسی مکانیک. ماشین آلات و وسایل نقلیه استفاده می شود یک سری مشخصات کاملاً متفاوت است.

فولاد های ساختمانی استاندارد که معمولاً مورد استفاده قرار می گیرند عبارتند از:

فولادهای کربنی

  • A36 – پروفیل ها و ورق ساختمانی.
  • A53 – لوله ها و پروفیل های لوله ای ساختمانی.
  • A500 – لوله ها و پروفیل های لوله ای ساختمانی.
  • A501- لوله ها و پروفیل های لوله ای ساختمانی.
  • A529 – پروفیل ها و ورق ساختمانی.
  • A1085 – لوله ها و پروفیل های لوله ای ساختمانی.

فولادهای کم آلیاژ مقاوم بالا

  • A441 – پروفیل ها و ورق های ساختمانی -(جایگزین توسط A572).
  • A572 – پروفیل ها و ورق های ساختمانی.
  • A618 – لوله ها و پروفیل های لوله ای ساختمانی.
  • A992 – کاربردهای ممکن تیرهای مقاطع بال پهن W یا I هستند.
  • A913 – پروفیل های آبدیده بال پهن W

Quenched and Self Tempered (QST) W shapes

  • A270 – پروفیل ها و ورق های ساختمانی

فولادهای مقاوم دربرابر خوردگی با آلیاژ کم و مقاموت بالا

  • A243 – پروفیل ها و ورق های ساختمانی.
  • A533 – پروفیل ها و ورق های ساختمانی.

فولاد های آلیاژی آب دیده

  • A514 – پروفیل ها و ورق های ساختمانی.
  • A517 – دیگ های بخار و مخازن تحت فشار.
  • فولاد اگلین – اقلام ارزان قیمت هوافضا و تسلیحات.

فولاد آهنگری شده

  • A668 – فولاد آهنگری

فولاد ساختمانی

  • خصوصیات – مقاومت فشاری و همچنین مقاومت کششی فولاد ساختمانی با مقاومت های نسبت داده شده به بتن متفاوت است.
  • مقاومت – با دارا بودن مقاومت بالا، سختی، سفتی و خاصیت انعطاف پذیری. فولاد یکی از متداول ترین مصالح در ساخت و ساز ساختمان های تجاری و صنعتی است.
  • قابلیت ساخت- فولاد تقریباً به هر شکلی قابل ساخت است. که با اتصالات پیچی یا جوشی در ساخت و ساز قابل استفاده است. به محض تحویل مصالح در کارگاه ساختمانی، می توان سازه فولادی را نصب کرد. در حالی که بتن، حداقل 1-2 هفته پس از ریختن و قبل از ادامه عملیات اجرایی. باید به عمل آورده شود، و این باعث می شود. که فولاد بعنوان مصالح سازه ای سازگار با برنامه عملیات اجرایی باشد.
  • مقاومت در برابر آتش – فولاد ذاتاً ماده ای غیر قابل اشتعال در برابر آتش است. ولی به هر حال، هنگامی که تا درجه حرارت هایی. مانند گرمایی که در جریان یک حادث? آتش سوزی ایجاد می شود، گرم می شود. مقاومت و سختی آن به میزان قابل توجهی کاهش می یابد. قوانین بین المللی ساختمان، پوشش دادن کافی فولاد را در مواد ضد حریق الزامی می دانند. که این باعث افزایش هزینه کلی ساختمانهای با اسکلت فلزی می شود.
  • خوردگی – فولاد در هنگام تماس با آب. می تواند دچار خوردگی شود و یک سازه بالقوه خطرناک را ایجاد می کند. برای جلوگیری از هرگونه خوردگی در طول عمر یک سازه فولادی. باید در ساخت سازه های فلزی اقدامات لازم صورت گیرد. فولاد را می توان رنگ کرد که مقاومت در برابر آب را فراهم می کند. همچنین، مواد مقاوم در برابر آتش که برای پوشاندن فولاد استفاده می شود معمولاً در برابر آب نیز مقاوم است.
  • کپک قارچی – فولاد نسبت به چوب سطح مناسب کمتری در محیط، برای رشد کپک قارچی را فراهم می کند.

بلندترین سازه ها امروزه (که معمولاً به آن “آسمان خراش ها” یا ساختمان مرتفع گفته میشود). به دلیل قابلیت خوب ساخت و همچنین نسبت بالای مقاومت به وزن فولاد. با استفاده از این مصالح ساخته می شوند. در مقایسه با بتن، اگرچه چگالی بتن از فولاد کمتر است. اما نسبت مقاومت به وزن بتن نیز بسیار کمتر است. به همین دلیل یک عضو سازه بتنی برای تحمل یک میزان معین بار به حجم بسیار بزرگی نیاز دارد.

فولاد گرچه متراکم تر است اما برای حمل بار به مواد زیادی احتیاج ندارد. اما، این مزیت برای ساختمان های کم ارتفاع، یا برای ساختمان های چند طبقه یا کمتر، اهمیت زیادی ندارد. بارهای ساختمان های کم ارتفاع نسبت به سازه های مرتفع بسیار کمتر است. و در نتیجه استفاده از بتن برای سازه اقتصادی است. این امر به ویژه در مورد سازه های ساده. مانند پارکینگ یا هر ساختمانی که دارای شکل ساده مستطیلی است، صادق است.

ترکیب فولاد و بتن مسلح

سازه هایی که از این دو ماده تشکیل شده اند. از مزایای فولاد و بتن مسلح هر دو بهره مند می شوند. این روش هم اکنون در بتن آرمه متداول است. که در آن از ظرفیت کششی میلگردهای تقویتی برای تأمین استحکام کششی در اعضای بتنی سازه استفاده می شود. نمون? بارز آن در پارکینگ های چند طبقه است. برخی از این پارکینگ ها با استفاده از ستون های فلزی و دال بتن مسطح ساخته می شوند. بتن برای شالوده ریخته می شود و سطحی برای ساخته شدن پارکینگ بر روی آن را به پارکینگ می دهد.

ستون های فولادی با پیچ و مهره یا جوشکاری آنها به میخ های فلزی. که بخشی از آن ها از سطح دال بتن ریزی شده بیرون گذاشته شده اند. به شالوده متصل می شوند. تیرهای بتنی پیش ساخته می تواند برای نصب در طبقه دوم، به کارگاه تحویل داده شوند. که پس از آن یک دال بتنی برای قسمت روسازی پارکینگ ریخته می شود. این روند می تواند در مورد چندین طبقه انجام شود. یک پارکینگ از این نوع فقط نمونه ای قابل اجرا از بسیاری از سازه هایی است. که می تواند از بتن مسلح و فولاد استفاده کننند.

مهندسی سازه از وجود طرح های بی شماری برای ایجاد ساختمانی کارآمد، ایمن و مقرون به صرفه آگاه است. این وظیف? آن مهندس است که در کنار مالکان، پیمانکاران و دیگر طرف های ذینفع در پروژه. برای رسیدن به یک نتیج? ایدئال متناسب با نیاز هر کدام از آنها، همکاری کند. مهندس، هنگام انتخاب مصالح سازه ای برای ساختمان، متغیرهای زیادی، از جمله هزینه. نسبت مقاومت/وزن، پایداری مصالح، قابلیت ساخت و غیره را در نظر می گیرد.

خواص حرارتی

خواص فولاد بسته به عناصر آلیاژی آن بسیار متفاوت است.

درجه حرارت آستنیت کننده، دمایی که در آن فولاد به ساختار بلوری آستنیت تبدیل می شود. برای فولاد از 900 درجه سانتی گراد (1650 درجه فارنهایت) در مورد آهن خالص شروع می شود. و با افزایش میزان کربن، دما به حداقل 724 درجه سانتی گراد (1335 درجه فارنهایت). برای فولاد یوتکتیک (فولاد حاوی 83% وزنی کربن تنها)، پایین می آید. با نزدیک شدن میزان کربن به 2.1 % (نسبت به جرم). درجه حرارت آستنیت کننده بالا می رود و به 1.130 درجه سلسیوس (2070 درجه فارنهایت) می رسد. به طور مشابه، نقطه ذوب فولاد بر اساس آلیاژ تغییر می کند.

کمترین دما که در آن یک فولاد کربنی ساده می تواند شروع به ذوب شدن کند. درجه حرارت جامد آن، 1130 درجه سانتی گراد (2070 درجه فارنهایت)، است. فولاد، زیر این درجه حرارت، هرگز به مایع تبدیل نمی شود. آهن خالص (فولاد به صفر درصد کربن) با شروع به ذوب شدن 1492 درجه سانتی گراد (2718 درجه فارنهایت). و با رسیدن به 1539 درجه سانتیگراد (2802 درجه فارنهایت) کاملاً مایع است فولاد با 2.1 % کربن وزن. شروع به ذوب شدن در 1130 درجه سانتیگراد (2070 درجه فارنهایت). و با رسیدن به 1315 درجه سانتی گراد (2399 درجه فارنهایت)، کاملاً ذوب می شود. فولاد با بیش از 2.1% کربن دیگر فولاد نیست. اما به عنوان چدن شناخته می شود.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
09121224227
09371901807
تلفن: 02166800251
فکس: 66800546


بررسی مودهای شکست لرزه ای و راهکارهای مقاوم سازی مخازن استوانه ای فولادی مهارنشده در یک مجتمع نفتی

بررسی مودهای شکست لرزه ای و راهکارهای مقاوم سازی مخازن استوانه ای فولادی

بررسی مودهای شکست

چکیده

مخازن استوانه ای فولادی رو زمینی به طور وسیع در مجتمع های نفتی و از جمله انبارهای نفت ایران به کار گیری می شوند. تجربه زلزله های گذشته در کشورهای مختلف نظیر ژاپن، ایالات متحده، ترکیه و غیره نشان می دهد. که این گونه مخازن در مقابل حرکات نیرومند زمین در زلزله بسیار آسیب پذیر بوده. و مطالعات آسیب پذیری و مقاوم سازی آنها از اهمیت زیادی برخوردار است. در این مقاله رفتار لرزه ای 5 مخزن فولادی رو زمینی مهار نشده. در یک مجتمع نفتی با نسبت های ارتفاع به قطر (H/D) مختلف مورد مطالعه قرار گرفتند.

و انواع مودهای آسیب شامل کمانش پافیلی، کمانش الماسی. آسیب دیدگی سقف در اثر نوسان سیال، لغزش، واژگونی، بلندشدگی کف و نشست نامتقارن با تحلیل غیر خطی بررسی گردید. در این مطالعات، علاوه بر ارزیابی ضوابط آیین نامه های معتبر از جمله API650 و ASCE. تحلیل های استاتیکی، مودال، طیفی (خطی) و تاریخچه زمانی (غیر خطی) نیز بکارگیری شد. نتایج مطالعات موردی نشان می دهد که با در نظرگیری ارتفاع آزاد سیال داخل مخازن (free Board). برابر 13 درصد ارتفاع آنها، خطر آسیب دیدگی سقف از بین می رود. همچنین مخازن با نسبت ارتفاع به قطر بزرگتر و یا مساوی با یک (≤H/D) ناپایدار می باشند. سایر مودهای آسیب مذکور در مورد مخازن مورد مطالعه حاکم نمی باشند.

مقدمه یکی از انواع سازه های مهم که کاربرد فراوانی در پالایشگاه های نفتی دارد. مخازن فولادی رو زمینی نفتی هستند. که به شکل استوانه ای طراحی و اجرا می گردند. در واقع مخزن را وقتی رو میزی گویند که کف آن متکی بر بستر خاک یا پی باشد. یک مخزن فولادی از سه جزء اصلی تشکیل یافته است. بدنه، کف و سقف. کف مخزن ورق تختی می باشد که متکی بر بستر متراکم و یا شالوده گسترده بوده. و سقف آن نیز بسته به نوع ماده ذخیره شده به صورت ثابت و یا متحرک ساخته می شود.

بررسی مودهای شکست

مخازن رو زمینی نسبت به شرایط تکیه گاهی، به دو گروه تقسیم می شوند. مهار شده و مهار نشده. در یک مخزن مهار شده از حرکت قائم نسبی جداره در سطح پی جلوگیری شده است. در حالیکه یک مخزن مهار نشده در اثر تکان های شدید می تواند از روی زمین یا پی بلند شود. و بنابراین برای تحلیل دقیق دینامیکی آن آنالیز غیر خطی لازم است.

رفتار دینامیکی مخازن اولین بار توسط هاوزنر مدل سازی شد. و مبنای طرای آیین نامه ها قرار گرفت. وی چنین عنوان کرد که در یک مخزن دارای سطح آزاد که در معرض شتاب دینامیکی افقی قرار دارد. سیال از دو طریق بر روی جداره اثر می گذارد. 1) فشار نوسانی 2) فشار ضربانی. فشار نوسانی در اثرحرکت سیال مواج در بالای مخزن پدید می آید. و فشار ضربانی در اثر حرکت قسمتی از سیال در پایین مخزن و هماهنگ با پوسته ایجاد می گردد. فرکانس حرکت نوسانی به میزان قابل توجهی پایین تر از فرکانس حرکت ضربانی است. بدین معنی که این مود در پریودهای بالای زلزله تحریک می گردد.

در سال 2003 میلادی علی الزینی استاد و محقق دانشگاه کالیفرنیا. مقاله ای تحت عنوان ((بررسی پارامترهای مؤثر در پاسخ لرزه ای غیر خطی مخازن مهار نشده)) ارائه کرد. وی در این تحقیق اثراث فشار هیدرودینامیکی سیال را بر روی جداره مخازن مهار نشده در طول ارتعاشات ناشی از زلزله مورد بررسی قرار داد. و همچنین نتیجه گرفت که احداث مخازن بر روی فوندانسیون های انعطاف پذیر مناسب تر از اجرای آنها بر روی فوندانسیون های صلب می باشد. زیرا نرمی فوندانسیون سبب طولانی شدن پریود ارتعاشی مخازن در برابر نیروهای هیدرودینامیکی می گردد.

در سال 2004 میلادی نیز مارتین کولر به همراه پراوین مالهوترا مقاله ای تحت عنوان ((ارزیابی لرز های مخازن مهار نشده)) ارائه نمودند. که درآن هفت مخزن با نسبت های ارتفاع به شعاع مختلف (H/R) تحت بررسی قرار گرفت. آنها چنین عنوان کردند که یک ارتباط تنگاتنگ بین نسبت (H/R) و بلندشدگی کف مخازن وجود دارد.

مطالعات آسیب پذیری لرز ه ای مخازن فولادی موجود در یک مجتمع پالایشگاهی در سال 2006 نشان داد. که حدود 40 درصد مخازن موجود بسیار آسیب پذیر بوده و نیازمند مقاوم سازی اساسی هستند.

در این تحقیق، 5 مخزن موجود در یک مجتمع پالایشگاهی با نسبت های ارتفاع به قطر مختلف مورد ارزیابی قرار گرفت. علاوه بر کنترل ضوابط آیین نامه ای تحلیل های استاتیکی، مودال، طیفی و تاریخچه زمانی غیر خطی برای هریک از مخازن صورت پذیرفت.

مودهای آسیب مخازن

آسیب های وارده به مخازن را می توان در قالب هفت معیار آسیب پذیری بیان نمود. که به صورت مختصر عبارتند از:

واژگونی

وقتی نسبت ارتفاع به قطر زیاد می شود. پایداری مخزن در برابر این آسیب دیدگی کاهش می یابد. علت این پدیده بالا رفتن ارتفاع مرکز ثقل مخزن می باشد. این معیار با استفاده از ضوابط آیین نامه API650 و بر اساس نسبت M[D2(WL+Wt)] کنترل می گردد. در این رابطه M لنگر واژگونی مخزن بر حسب (N/m) و WL وزن محتویات مخزن. و در واحد طول محیط (N/m) و Wt وزن ورق جداره در واحد طول محیط مخزن بر حسب (N/m) می باشند. در صورتی که این نسبت بیشتر از 1/57 باشد مخزن ناپایدار بوده و واژگون خواهد شد.

کمانش الماسی جداره

تنش های فشاری که ایجاد شد در جداره مخازن سبب بروز کمانش در قسمت های میانی آن می گردد. که کمانش الماسی (کمانش الاستیک) نام دارد. مخازن با ارتفاع زیاد معمولاً دچار چنین آسیبی می شوند. این آسیب با محدود کردن تنش فشاری ایجاد شده. در جداره مخزن و مقایسه آن با تنش مجاز جداره مطابق با ضوابط آیین نامه api650 کنترل می گردد.

کمانش پافیلی جداره

کمانش پافیلی (کمانشی الاستوپلاستیک) معمولاً در مخازن بزرگ و در ارتفاع 1/5 تا 2/5 متری از کف مخزن رخ می دهد. علت ایجاد چنین کمانشی آن است که در هنگام بلند شدن قسمتی از کف مخزن تحت اثر نیروهای جانبی زلزله. در طرف مقابل آن تنش فشاری قائم به شدت جلوگیری از افزایش می یابد. در این حالت ترکیب دو تنش کششی حلقوی و فشاری قائم باعث ایجاد این کمانش در جداره می گردد. بدین ترتیب جلوگیری از افزایش بیش از حد تنش کششی حلقوی در جداره مخزن معیاری برای کنترل کمانش پافیلی محسوب می شود.

لغزش مخزن

نیروهای برشی ناشی از زلزله در تراز کف مخزن ممکن است بر نیروی اصطکاک غلبه کرده و باعث لغزش مخزن گردد. برای کنترل مخزن در برابر لغزش، برش پایه به عنوان نیروی محرک و نیروی اصطکاک کف مخزن با بستر. به عنوان نیروی مقاوم در نظرگیری می شود. بر اساس پیشنهاد دستورالعمل ASCE برای تأسیسات موجود، حداقل ضریب اطمینان لازم در مقابل لغزش برابر 1/5 می باشد. برای محاسبه نیروی مقاوم در برابر لغزش، ضریب اصطکاک بین کف مخزن و پی برابر 0/4 پیشنهاد گردید.

آسیب دیدگی سقف

نیروی ارتعاشی ناشی از زلزله باعث ارتعاش مخزن و سیال درون آن می گردد. ارتعاش سیال با فرکانش خیلی پایین تر از فرکانس جداره رخ می دهد. ارتعاش سیال متأثر از ارتعاش جداره نیست. بلکه عموماً به محتوای فرکانسی زلزله بستگی دارد. بنابراین، اگر پیش بینی های لازم صورت نگیرد. ممکن است پوشش سقف مخزن صدمه ببیند و یا محتویات درون آن به بیرون پاشش شود. عامل کنترل کننده در این حالت ارتفاع موج سیال می باشد.

بلند شدگی کف

بلند شدگی کف مخازن مهار نشده یکی از مودهای آسیب در زلزله های گذشته محسوب می شود. در صورتی که مقدار این بلند شدگی از مقدار مجاز آن (30 سانتیمتر) بیشتر شود. ممکن است منجر به پارگی جداره مخزن و یا شکستگی لوله های متصل به آن گردد.

نشست نامتقارن بستر

تنش های ناشی از لنگر واژگونی و ضربه های ناشی از بلند شدگی کف مخزن در هنگام زلزله. موجب نشست نامتقارن در تراز پایه می گردد. در نتیجه امکان آسیب دیدگی و خسارت مخزن وجود دارد. حداکثر نشست نامتقارن بستر طبق دستورالعمل های موجود به 5 سانتیمتر محدود گردید.

بررسی مودهای شکست

مدل سازی و تحلیل مخازن

مشخصات هندسی مخازن مورد بررسی به اختصار در جدول (1) بیان گردید و معلوم مشخص است. همچنین مدل سه بعدی یکی از مخازن به همراه چگونگی مش بندی آن در شکل (1) نمایان و مشخص است.

بررسی مودهای شکست

برای مدل سازی رفتار دقیق مخازن به هنگام تحریک زلزله، هم جداره فولادی. و هم سیال درون مخزن به کمک نرم افزار Ansys مدل سازی شده اند. برای مدل کردن جداره از المان Shell63 استفاده شده است. این المان یک المان خمشی – غشائی است. که قابلیت تحلیل نیروهای درون صفحه عمود بر صفحه را دارا می باشد. به علاوه، این المان قابلیت سخت شدگی کرنش و تغییر مکان های بزرگ را دارا می باشد.

بررسی مودهای شکست

برای مدل سازی سیال از المان Fluid80 استفاده شده است. این المان برای مدل کردن سیال بدون جریان مناسب است. و برای محاسبه فشار هیدرواستاتیک و اندرکنش سیال و سازه کاربرد دارد. همچنین برای مدل کردن بلند شدگی کف مخزن از المان Gap (Link10) استفاده شده است. این المان یک فتر فشاری است که سختی آن در هنگام کشش صفر می گردد.

تحلیل استاتیکی

به عنوان اولین گام در تحلیل کمی، مخازن تحت اثر وزن جداره و فشار هیدرواستاتیک سیال تحیلیل شده اند. نتایج این تحلیل بیانگر تنش های کششی حلقوی ایجاد شده در جداره مخزن تحت اثر فشار هیدرواستاتیک می باشد. همچنین، نتایج این تحلیل در ترکیبات بارگذاری مربوط به بارهای ثقلی و زلزله مورد استفاده قرار می گیرد.

بررسی مودهای شکست

تحلیل مودال

مشخصات ارتعاشی یک مخزن شامل فرکانس های طبیعی و شکل های مودی. از جمله پارامترهای مهم در تحلیل دینامیکی آن محسوب می شود. که با تحلیل مودال حاصل می شود. تعیین و بررسی این پارامترها می تواند در تفسیر رفتار دینامیکی مخزن مفید باشد. مودهای نوسانی و ضربانی از جمله مهمترین مودهای ارتعاشی محسوب می شوند که حداکثر جرم مؤثر را به خود اختصاص می دهند. و در تحلیل های دینامیکی حائز اهمیت هستند.

تحلیل طیفی

پس از انجام تحلیل مودال و تعیین مودهای اصلی مخزن تحلیل طیفی انجام پذیرفت. در این تحلیل برای ترکیب مودها از روش جذر مجموع مربعات (CQC) مورد کاربرد قرار گرفت. طیف طرح ویژه ساختگاه به صورت سه مؤلفه ای با نسبت های 100،30،30 استفاه شده است. نوع خاک محل تیپ III مطابق استاندارد 2800 زلزله ایران می باشد. مطابق دستورالعمل ASCE برای ارزیابی لرزه ای تأسیسات نفتی از طیف طرح ویژه ساختگاه. با احتمال گذر 10 درصد در 50 سال (دوره بازگشت 475 سال) استفاده گردیده که در شکل (2) ملاحظه می شود.

بررسی مودهای شکست

همچنین بر اساس ضمینه E آیین نامه API650 میرایی 2 درصد برای مود ضربانی و میرایی 0/5 درصد. برای مود نوسانی مخزن در نظر گرفته شده است.

تحلیل تاریخچه زمانی

با آنالیز تاریخچه زمانی میتوان علیه عوامل غیر خطی را در آنالیز وارد کرد. هدف از تحلیل دینامیکی حل معادلات حرکت حاکمه طبق رباطه (1) تحت اثر نیروهای زلزله می باشد.

بررسی مودهای شکست

این روابط به صورت غیر خطی تحلیل می شوند. و برای بر آورد میزان بلند شدگی کف مخزن و مقادیر دقیق پاسخ های سازه از این نوع تحلیل مورد کاربرد قرار گرفت.

میرایی سیستم دینامیکی به صورت میرایی رایلی در نظر گرفته شده است. که طبق رابطه (2) تابع خطی از جرم و سختی است.

که در آن [CFi] ماتریس میرایی المان i ام سیال ویسکوز و m تعداد المان های سیال می باشد. ضرایب a و β از رابطه (3) حاصل می شوند.

در رابطه فوق ωi و ωj فرکانس های دو مود اصلی مخزن و ξi و ξj میرایی مربوط به آنها می باشد. ضرایب a و β برای تحلیل تاریخچه زمانی بکار می رود.

در این مطالعات از رکوردهای زلزله های گلبافت، طبس و السنترو که بیشترین تطابق را با شرایط ساختگاه داشتند به کاری گیر گردید. این رکوردها به صورت سه مؤلفه ای در جهات متعامد با نسبت های 100،30،30 درصد به مخازن اعمال گردیده اند. نمودار تاریخچه زمانی شتاب زلزله طبس به عنوان نمونه در شکل (3) نمایان و مشخص است.

کنترل معیارهای آسیب پذیری مورد بررسی

با بهره گیری از نتایج تحلیل های دینامیکی غیر خطی هر یک از مخازن مورد نظر، معیارهای آسیب پذیری مربوطه کنترل گردیده است. که در ادامه بررسی می شوند.

کنترل واژگونی

به بهره گیری از ضوابط آیین نامه ASCE، نسبت M/[D2(wL+wt)] برای کلیه مخازن مورد نظر محاسبه گردیده. و نتایج آن در جدول (2) نمایان و مشخص است. همانطور که ملاحظه می شود فقط مخزن شماره 5 از نظر واژگونی مشکل دارد.

بررسی مودهای شکست

تغییرات میزان واژگونی مخازن بر حسب نسبت ارتفاع به قطر (H/D) در شکل (4) نمایان و مشخص است. همانطور که ملاحظه میشود تغییرات مربوطه غیر خطی است که با یک رابطه خطی تقریب زده شده است. روند تغییرات به گونه ای است که با افزایش نسبت (H/D) میزان واژگونی افزایش می یابد.

بررسی مودهای شکست

کنترل کمانش الاستیک الماسی در جداره

پس از محاسبه نسبت M/[D2(wL+wt)]. می توان حداکثر مقدار نیروی فشاری در واحد طول محیط جدار? مخزن (b) را بدست آورد. این نیرو با توجه به ضوابط آیین نامه API650 محاسبه گردید. و سپس تنش فشاری جداره مخزن (b/1000t) با تنش مجاز مربوطه مقایسه گردید. (t ضخامت ورق جداره به میلیمتر است). نتایج مورد حاصل از این محاسبات در جدول (3) نمایان و مشخص است. همچنین تغییرات تنش فشاری جداره بر حسب نسبت H/D در شکل (5) نمایان و مشخص است.

طبق ضوابط آیین نامه API650 کنترل کمانش الاستیک الماسی تنها در مورد مخازنی صورت می گیرد که پایدار بوده و مشکل واژگونی نداشته باشد. در واقع روابط موجود در این آیین نامه برای کنترل کمانش الماسی تنها در مورد مخازن پایدار معتبر می باشد. بنابراین کنترل این پارامتر در مورد مخزن شماره پنج امکان پذیر نیست.

کنترل کمانش الاستوپلاستیک پافیلی

برای کنترل این پدیده، تنش های کششی حلقوی در جداره مخازن تحت اثر آنالیزهای مختلف کنترل گردید. و نتایج مورد حاصل، در جدول (4) نمایان و مشخص است . نتایج مورد حاصل حاکی از آنست که مقدار این تنش در تحلیل طیفی بیشتر از مقادیر حاصله از سایر تحلیل ها می باشد. تغییرات این تنش ها بر حسب نسبت H/D در شکل (6) نمایان و مشخص است. طبق دستورالعمل ASCE ظرفیت مجاز تنشهای کششی در جداره مخازن برابر با Fa=1.6(0.6Fy) می باشد. که Fy تنش حد جاری شدن فولاد مصرفی است. و در مخازن مورد بررسی برابر با 2400 کیلوگرم بر سانتیمتر مربع می باشد. همانطور که ملاحظه می شود. مسأله کمانش پافیلی در مورد هیچ یک از مخازن مورد نظر مطرح نیست.

کنترل لغزش

به منظور کنترل لغزش مخازن، حداکثر برش پایه حاصله. برای هر مخزن به عنوان نیروی محرک (V) با استفاده از نتایج تحلیل طیفی و تاریخچه زمانی استخراج گردید. نیروی مقاوم در برابر لغزش توسط وزن سازه و اصطکاک بین کف و بستر مخزن به دست می آید. مطابق آیین نامه ASCE ضریب اطمینان در برابر لغزش مخازن بایستی 1/5 در نظر گیری شد. همچنین ضریب اصطکاک کف مخزن و بستر نیز برابر 0/4 در نظر گرفته شده است. بدین ترتیب برای کنترل لغزش مخازن رابطه (4) بررسی گردید.

بررسی مودهای شکست

0.4W≤1.5V

که در این رابطه W وزن مخزن و سیال درون آن می باشد. نتایج حاصل از کنترل لغزش مخازن مورد بررسی در جدول (5). و منحنی تغییرات میزان آن بر حسب نسبت H/D در شکل (7) ارائه شده است. همانطور که ملاحظه می شود مسأله لغزش در مخازن مورد نظر وجود ندارد.

کنترل نوسانات سیال (Sloshing) و آسیب سقف ارتعاش مخزن و سیال درون آن. در اثر لغزش های ناشی از زلزله سبب پایدار شدن امواجی در سطح سیال درون آن می شود. اگر پیش بینی های لازم در این مورد به عمل نیاید. این امواج سبب وارد آمدگی آسیب هایی به سقف مخازن می گردد. حداکثر ارتفاع امواج ایجادی در سطح سیال مخزن شماره دو به عنوان نمونه در شکل (8) نمایان و مشخص است. نتایج حاصل از دامنه نوسان سیال در مخازن مورد نظر حاصل از تحلیل های دینامیکی در جدول (6). و منحنی تغییرات آن در شکل (9) ارائه گردیده است.

همان طور که ملاحظه می شود. ارتفاع آزاد موجود (Free Board) در مخازن کافی نبوده و لذا آسیب پذیر هستند. یک راه حل برای جلوگیری از آسیب دیدگی سقف مخازن افزایش ارتفاع آزاد و راه حل دوم تقویت مخازن می باشد. بر اساس API650 ارتفاع آزاد مورد نیاز معادل 70 درصد ارتفاع موج می باشد.

بررسی مودهای شکست

کنترل بلندشدگی و نشست نامتقارن بستر

پدیده بلند شدگی و نشست نامتقارن مخازن یک پدیده غیرخطی هندسی می باشد. لذا برای بررسی میزان بلندشدگی کف و نشست ناشی از ضربه این بلندشدگی ها، آنالیز تاریخچه زمانی غیرخطی بر روی مخازن صورت پذیرفت. رکورد زلزله های طبق، گلبافت و السنترو که با شرایط ساختگاهی سازگاری بیشتری دارند، انتخاب شدند. پس از آنالیز تاریخچه زمانی، تغییر مکان قائم گره های کف مخزن تحت رکوردهای فوق بررسی و حداکثر مقادیر آنها استخراج گردید.

نتایج تحلیل در جدول (7) آمده است. همچنین نتایج نشست نامتقارن بستر در شکل (10) و نتایج بلندشدگی کف مخزن در شکل (11) نمایان و مشخص است. همانطور که ملاحظه می شود میزان بلند شدگی کف و همچنین میزان نشست بستر در تمام مخازن در محدوده مجاز قرار دارد. ولی با افزایش نسبت ارتفاع به قطر (H/D) این مقادیر افزایش می یابند.

راهکارهای مقاوم سازی

با توجه به محدودیت های موجود در شناخت میزان دقیق خطر لرزه ای یک ساختگاه برای طراحی یا مقاوم سازی. و کاستی های موجود در مدل سازی های تحلیلی نتایج قطعی قابل ارائه نمی باشد. بنابراین همواره پذیرش سطوحی از خطر اجتناب ناپذیر است. در نتیجه، افزودن حاشیه اطمینان و تأمین ضوابط طراحی و مقاوم سازی. و همچنین بررسی جزئیات با دقت بیشتر می تواند به عملکرد مطمئن و رفتار متناسب مخازن تحت زلزله های محتمل در آینده منجر شود. لذا هدف اصلی در یک پروژه طراحی و یا مقاوم سازی. کاهش خطر و حداقل نمودن آن با در نظر گرفتن امکانات و منابع موجود می باشد.

در تمام مخازن بررسی شده، سطح سیال درونی در وضعیت بحرانی قرار گرفته است. بدین ترتیب در ادامه راهکارهایی برای مقاوم سازی این مخازن ارائه گردیده است.

به منظور جلوگیری از آسیب های وارده به سقف در اثر پدیده نوسان سیال (Sloshing) که در تمام مخازن مورد بررسی به وجود می آید. کاهش ارتفاع سیال درون مخازن تا سطوح مورد بیان در جدول (6) کم هزینه ترین راه حل محسوب می شود. در این صورت لازم است میزان ارتفاع آزاد (Free Board) حداقل معادل 13 درصد ارتفاع کل هر مخزن در نظر گیری شود. در صورتی که به دلایل خاصی کاهش ارتفاع سیال امکان پذیر نباشد. لازم است با افزودن رینگ فولادی در بالای مخزن، تقویت کنج در مقابل ضربات ناشی از نیروی سال، مقاوم سازی لازم به عمل آید.

نتایج حاکی از آن است که مخزن شماره 5 با نسبت ارتفاع به قطر مساوی یک دچار واژگونی میشود و ناپایدار می باشد. در مورد این مخزن پس از بررسی راه حل های پیشنهادی آیین نامه API650. راه حل افزودن یک رینگ بتنی مسلح در پیرامون مخزن (زیر ورق پوسته) و مهار نمودن جداره مخزن. به این رینگ بتنی انتخاب شده است. نمایی از طرح پیشنهادی در شکل (12) نشان داده شده است. میل مهارهای لازم در فواصل مساوی طوری طراحی می شوند. که تحمل تنشها و نیروهای کششی ناشی از لنگر واژگونی را داشته باشند. باید توجه نمود که بر طبق ضوابط آیین نامه API650، فاصله میل مهارها نباید بیشتر از 3 متر در نظر گرفته شود. همچنین قطر مهارها نباید کمتر از 25 میلیمتر باشد.

بررسی مودهای شکست

تحلیل مجدد مخزن پس از مقاوم سازی نشان می دهد که تنش های کششی جداره برابر 12/34 مگاپاسکال می باشد. که کمتر از مقدار مجاز (43/58 مگاپاسکال) بوده و لذا قابل قبول می باشد.

نتیجه گیری

در این تحقیق 5 مخزن فولادی استوانه ای رو زمینی موجود در یک مجتمع نفتی مورد ارزیابی لرزه ای قرار گرفت. مخازن مورد بررسی در یک ناحیه لرزه خیر قرار دارند. که حداکثر شتاب زلزله طرح ساختگاه معادل 0.3g بر اساس استاندارد 2800 زلزله ایران می باشد. مهمترین یافت های حاصل از مطالعات تحلیلی و ارزیابی ضوابط آیین نامه ای به شرح زیر می باشند:

بررسی مودهای شکست

1- به منظور جلوگیری از پدیده واژگونی مخازن مهار نشده، بایستی نسبت ارتفاع به قطر (H/D) آنها از 0/7 کمتر باشد. این نسبت در آیین نامه های موجود به 0/6 محدود شده است.

2- با افزایش نسبت ارتفاع به قطر (H/D)، خطر کمانش الاستیک الماسی در جداره نیر افزایش می یابد.

3- با افزایش نسبت ارتفاع به قطر (H/D)، میزان کمانش الاستوپلاستیک کاهش می یابد. همچنین، در مخازن با قطر بزرگتر، خطر کمانش الاستوپلاستیک پافیلی بیشتر است.

4- در مخازن مورد مطالعه پدیده لغزش بستر اتفاق نمی افتد. تجربه زلزله های گذشته نمایان است که تا کنون در مخازن با قطر بزرگتر از 9 متر لغزش قابل ملاحظه ای نمایان و مشخص نیست.

بررسی مودهای شکست

5- با افزایش قطر مخازن دامنه نوسان سایل داخل آنها (Sloshing) نیز افزایش می یابد. لیکن با افزایش نسبت ارتفاع به قطر (H/D)، این دامنه کاهش می یابد. ارتفاع آزاد سایل حداقل بایستی 13 درصد ارتفاع کل مخزن باشد. تا از آسیب دیدگی سقف جلوگیری شود.

6- با افزایش نسبت ارتفاع به قطر (H/D)، میزان بلندشدگی کف و همین طور میزان نشست کف نیز افزایش می یابد. در مخازن بررسی شده که نسبت های ارتفاع به قطر کوچکتر از یک بوده است. (H/D≤I) میزان بلندشگی و نشست بستر کمتر از مقادیر مجاز آیین نامه ای می باشد.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
09121224227
09371901807
تلفن: 02166800251
فکس: 66800546

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

tps://www.instagram.com/foolad_paytakht.ir اینستاگرام